Co-Training for Domain Adaptation

نویسندگان

  • Minmin Chen
  • Kilian Q. Weinberger
  • John Blitzer
چکیده

Domain adaptation algorithms seek to generalize a model trained in a source domain to a new target domain. In many practical cases, the source and target distributions can differ substantially, and in some cases crucial target features may not have support in the source domain. In this paper we introduce an algorithm that bridges the gap between source and target domains by slowly adding to the training set both the target features and instances in which the current algorithm is the most confident. Our algorithm is a variant of co-training [7], and we name it CODA (Co-training for domain adaptation). Unlike the original co-training work, we do not assume a particular feature split. Instead, for each iteration of cotraining, we formulate a single optimization problem which simultaneously learns a target predictor, a split of the feature space into views, and a subset of source and target features to include in the predictor. CODA significantly out-performs the state-of-the-art on the 12-domain benchmark data set of Blitzer et al. [4]. Indeed, over a wide range (65 of 84 comparisons) of target supervision CODA achieves the best performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Domain Adaptation for Parsing

We compare two different methods in domain adaptation applied to constituent parsing: parser combination and cotraining, each used to transfer information from the source domain of news to the target domain of natural dialogs, in a setting without annotated data. Both methods outperform the baselines and reach similar results. Parser combination profits most from the large amounts of training d...

متن کامل

Filling the Gap: Semi-Supervised Learning for Opinion Detection Across Domains

We investigate the use of Semi-Supervised Learning (SSL) in opinion detection both in sparse data situations and for domain adaptation. We show that co-training reaches the best results in an in-domain setting with small labeled data sets, with a maximum absolute gain of 33.5%. For domain transfer, we show that self-training gains an absolute improvement in labeling accuracy for blog data of 16...

متن کامل

Semi-supervised Subspace Co-Projection for Multi-class Heterogeneous Domain Adaptation

Heterogeneous domain adaptation aims to exploit labeled training data from a source domain for learning prediction models in a target domain under the condition that the two domains have different input feature representation spaces. In this paper, we propose a novel semi-supervised subspace co-projection method to address multiclass heterogeneous domain adaptation. The proposed method projects...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011